Кирпичик

The Stirling Engine

A ‘Stirling Engine’ is in the family of heat engines. It is a closed cycle regenerative hot air (or other permanent gas) engine.. Closed cycle means that there is a fixed volume of the ‘working fluid’ in the system. There is no intake, there is no exhaust.

The Stirling engine was first patented in 1816 by Dr. Robert Stirling. The original patent focused more on ‘The Economizer’ which was a heat exchange unit that saw primary interest for use as the first incarnation of the solar water heater.

Originally the Stirling engine was developed by Robert Stirling and his brother James. It resulted in many patents and the first Sterling in commercial use was used to pump water in a quarry in 1818. After more development many patents for various improvements, including pressurization, which directly affected the amount of work or force the engine could produce, came about in 1845. By this time, the power output of this engine had been brought up to the level that it could drive all the machinery at a Dundee iron foundry.

The engine was promoted as being very fuel conserving and was pushed to be a safer alternative to steam engines of the time that had many deadly incidents involve exploding boilers. However because of the heat required and the level of exchange required, coupled with the materials of the day, the Stirling engine could never really give the steam engine serious competition, and by the late 1930’s the Stirling was all but forgotten in mainstream science and industry and only represented in odd toys and small ventilation fans.

Around this time, Philips, the large electrical and electronic manufacturer was seeing to expand its market for radio sets into areas where a power source or supply of batteries was considered unstable. Philips further developed the Stirling engine through World War II and really only achieved commercial success with the ‘reversed Stirling engine’ cryocooler. However Philips did take out quite a few patents and gain a large amount of information about the Stirling engine.

Since the Stirling engine is a closed cycle, it contains a fixed mass of gas called the “working fluid”, most commonly air, hydrogen or helium. In normal operation, the engine is sealed and no gas enters or leaves the engine. No valves are required, unlike other types of piston engines. The Stirling engine, like most heat-engines, cycles through four main processes: cooling, compression, heating and expansion. This is accomplished by moving the gas back and forth between hot and cold heat exchangers. The hot heat exchanger is in thermal contact with an external heat source, e.g. a fuel burner, and the cold heat exchanger being in thermal contact with an external heat sink, e.g. air fins. A change in gas temperature will cause a corresponding change in gas pressure, while the motion of the piston causes the gas to be alternately expanded and compressed.

The gas follows the behavior described by the gas laws which describe how a gas’s pressure, temperature and volume are related. When the gas is heated, because it is in a sealed chamber, the pressure rises and this then acts on the power piston to produce a power stroke. When the gas is cooled the pressure drops and this means that less work needs to be done by the piston to compress the gas on the return stroke, thus yielding a net power output.

When one side of the piston is open to the atmosphere, the operation is slightly different. As the sealed volume of working gas comes in contact with the hot side, it expands, doing work on both the piston and on the atmosphere. When the working gas contacts the cold side, the atmosphere does work on the gas and “compresses” it. Atmospheric pressure, which is greater than the cooled working gas, pushes on the piston.

To summarize, the Stirling engine uses the temperature difference between its hot end and cold end to establish a cycle of a fixed mass of gas expanding and contracting within the engine, thus converting thermal energy into mechanical power. The greater the temperature difference between the hot and cold sources, the greater the potential Carnot cycle efficiency.

Pros and Cons of Stirling Engines

Pros

Cons

Power and torque issues

Gas Choice Issues

Size and Cost Issues

Exit mobile version